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Velocity-curvature dependence for chemical waves in the Belousov-Zhabotinsky reaction:
Theoretical explanation of experimental observations

Pavel K. Brazhnik and John J. Tyson
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

~Received 11 November 1998!

Experimental observations ofV waves in the Belousov-Zhabotinsky reaction show a deviation from linearity
of the front velocity dependence on curvature, which we seek to explain. The extent of deviations depends on
the method of measuring velocity (V) and curvature~k!. For one method, our theory predicts a cubick-of-V
curve, deviating from the eikonal approximation towards smallerV for large negative curvatures. This is
shown to agree well with our numerical study ofV waves in the Oregonator model and to be consistent with
experimental results.@S1063-651X~99!03004-4#

PACS number~s!: 82.40.Ck
-
o
I

in
vin
di
re

as

rv
ith
a
h

ed

l
f-
t
o
i

r

l
i

ed

-
i-
th

v

go,
ar

ors,
are
ith
re-
ge
use
g
ture
he

ins

he
-

ed
res-
ric

BZ
tor

rts
ane
with
s a

ntal
t
ted
d
rn

ith
s
ere
The Belousov-Zhabotinsky~BZ! reaction provides an ex
cellent experimental system for studying the geometry
dissipative traveling waves in reaction-diffusion systems.
bulk solution ~usually gelled to prevent convection! and in
thin layers of reagent, zones of oxidation are seen mov
through a background of more reduced reagent. The mo
front between reduced and oxidized zones is easily
cerned, and its local curvature and velocity can be measu
The dependence of local front velocityV on curvaturek
gives much information about how the wave moves.

A theory of the effects of curvature on wave velocity w
developed by Zykov@1# and by Tyson and Keener@2# using
singular perturbation arguments. They proved, as is obse
experimentally, that those parts of an excitation front w
positive curvature in the direction of the movement prop
gate more slowly than those with negative curvature. T
linear velocity-curvature dependence for slightly curv
fronts,

V5V02Dk, ~1!

~hereV0 is the velocity of a plane wave andD is diffusivity
of the fast-changing component! is known as the eikona
approximation. It shows explicitly the stabilizing role of di
fusion for such waves, and enables one to incorporate
curvature phenomenon into a coarse-scale geometrical m
which has become a powerful tool in the study of waves
two and three dimensional~3D! excitable media~EM! @3–5#.
Further theoretical exploration of theV-of-k dependence
~analytical@1# and numerical@6#! has revealed its nonlinea
character: while for negative curvature Eq.~1! is still be-
lieved to hold, for positivek it was shown to exhibit a critica
value beyond which propagation of a continuous front
impossible.

Experimentally, theV-of-k dependence has been studi
in the BZ reaction@7–10#, aggregation patterns@11#, and
heart tissue@12#. All experiments confirm the linear depen
dence ofV on k for modestly curved fronts. For larger pos
tive curvatures, experiments are not able to establish
theoretically predicted deviation from Eq.~1! toward smaller
V, but are consistent about the existence of a critical cur
ture.
PRE 591063-651X/99/59~4!/3920~6!/$15.00
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Two experiments explore theV-of-k dependence for
negative curvature in the BZ reaction. Almost a decade a
from a study of cusps formed in the collision of two circul
waves, the eikonal approximation~1! was pronounced to be
valid far beyond the region of its applicability~if considered
as a perturbation expansion! @7#. For very large curvatures
though, the data obtained were, as mentioned by the auth
not reliable. The cusps monitored in such experiments
not stationary, they change their curvature and velocity w
time, which was one of the major obstacles to obtaining
liable data. To eliminate this deficiency, the region of lar
negative curvatures was reexamined recently by making
of V-shaped waves@9,10#, which are stationary propagatin
patterns and hence do not change their velocity and curva
with time. Surprisingly, for large negative curvatures, t
data obtained indicate a strong deviation ofV from Eq. ~1!
towards higher velocities, an observation that still rema
unexplained.

In this paper we present a theoretical study of t
velocity-curvature dependence forV waves based on an ap
proximate partial differential equations~PDE! model. We
explain deviations from the linear eikonal equation observ
in experiments, and propose a nonlinear analytical exp
sion for theV-of-k dependence which contains a paramet
dependence on the anglea between theV wave’s wings. The
theory is shown to compare well with experiments on the
reaction and with numerical results for the Oregona
model.

V(k) from V waves in BZ reaction.V waves are formed in
the oblique collision of two plane waves—the colliding pa
of the fronts annihilate, and after a corner between the pl
waves becomes smooth, a stationary propagating wedge
finite negative curvature appears. The wedge travels a
stationary structure, without change of shape. Experime
studies ofV waves in a regular liquid BZ and in the ligh
sensitive version of BZ reaction in a silica gel were repor
in @9,10#. In the former case aV-shaped silver wire was use
to initiate patterns while in the latter case an initial patte
was generated by illuminating only a portion of the gel w
some anglea. The pattern then quickly evolved in time to it
final stationary configuration on which measurements w
made. The authors have also performed a study ofV-wave
3920 ©1999 The American Physical Society
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propagation numerically in a two-variable Oregonator mo
~see below!. For eachV wave with givena, the velocity of
the wave as a whole was measured together with the cu
ture of the wave front at the vertex. Since for different ang
a the velocity of the wave and its curvature at the wedge
different, the set of measurements for differenta produces a
function V(k) reported in@9# and depicted in Fig. 1.

Analytical expression for V(k). For theoretical calcula-
tions the BZ reaction is often modeled by the Oregona
which describes only five of the most important reacti
steps@13#. The Oregonator can be further simplified to
two-variable version written for the propagator variableu
~dimensionless concentration of HBrO2) and the recovery
variablev ~dimensionless concentration of ferriin! as @14#

]u

]t
5

1

« S u2u22 f v
u2q

u1qD1DDu~ t,x,y!, ~2a!

]v
]t

5u2v1DvDv. ~2b!

Numerical values for the parameters in the above sys
usually areD;1.0,Dv;0.5, f ;1.0,q;0.001,«;0.01, and

FIG. 1. Dependence of the normalized local front velocityV/V0

versus the normalized front curvaturek/uk100u (k100 is the curvature
of the vertex of theV wave ata5100°): diamonds correspond t
numerical simulations with the two-variable Oregonator mo
@Eqs.~2a!, ~2b!#, crosses are experimental data for measuremen
the BZ reaction@9#, and the solid line corresponds to the scal
eikonal equationV/V0512(12V100/V0)(k/uk100u). ~The straight
solid line assigned in Fig. 8 in@9# to the eikonal approximation doe
not have the correct slope, diamonds and crosses have to be
changed in order to correspond to the description in the figure
tion, and also the abscissa axis isk/uk100u. These are corrected in
@10# and in our Fig. 1. In our figure we have also omitted, in ord
to avoid cluttering, some experimental points from the original d
set.! The triangles present our numerical data~values for parameters
of the Oregonator model are as in@9#, namely,D51.0, Dv50, f
53.0, q50.001,«50.01) for the front defined as a constant-lev
line at the levelul50.1, and filled circles forul50.8; space and
time steps wereDx50.02 andDt50.0001. The dashed line show
the corresponding curve resulting from our theory (ul50.1), Eq.
~15!, with b50.7.
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often diffusion of the recovery variable is neglected. (Dv
50 if the catalyst is immobilized in a gel@9#.!

Consider stationary waves propagating along theX axis
with velocity Vp ~for plane wavesVp5V0). For the tradi-
tional scaling used in Eqs.~2a! and ~2b!, the traveling front
~u'0 carried tou'1) is narrow (Dx'«1/2) and moves rap-
idly (Vp'«21/2). For our purposes, it is convenient to re
cale time, t85t/«, and space,x85(«D)21/2x and y8
5(«D)21/2y, to resolve the structure of the front (Dx8'1)
and its velocity,Vp85(«/D)1/2Vp'1. Now, in the moving
frame, j85x82Vp8t8, Eqs. ~2a! and ~2b! can be written
~dropping the prime!

2Vpuj5u~j,y!2u22 f v
u2q

u1q
1ujj1uyy , ~3a!

2Vpvj5«~u2v !. ~3b!

Analytical solutions for the system~3a!,~3b! are not avail-
able even for one spatial dimension; therefore we proc
with further simplification. Similar to the way it was done i
a singular perturbation approach@2#, we distinguish the
front, top, and tail parts of the excitation pulse, and beca
we are interested solely in solitary waves, we concentr
here only on the front part. For a fully developed excitati
pulse, the value ofv along the front of the solitary wave i
small (v;0.005 for the set of parameters in Fig. 1! and
changes slowly; therefore, we considerv to be in this region
a constant (v5v0). ~We will not consider situations wher
the influence of the second component,v, on the front
propagation is significant, e.g., the case of the lateral in
bility @15#.! We are going to construct solutions for the pro
lem ~3a!, ~3b! which approximate the exact solution in th
region of smallu but are still large enough compared toq
~e.g.,u;0.1); therefore, for this purpose we set (u2q)/(u
1q)51 on the right hand side of Eq.~3a!. Thus, for the
lower part of the front of a propagating wave we end up w
only one equation,

2Vpuj5u2u22 f v1ujj1uyy . ~4!

The latter can be reduced by the shiftu5u91(1
2A124 f v0)/2 and dilatation u95A124 f v0ũ, j̃
5A124 f v0j, ỹ5A124 f v0y to the 2D version of the well-
known, quadratic Fisher equation

2cpuj5u2u21ujj1uyy , ~5!

where again we have omitted tildes. In Eq.~5!, cp5Vp /(1
24 f v0)1/4.

In replacing Eqs.~2a!,~2b! by Eq. ~5!, we are neglecting
processes occurring behind the excitation front, the effec
which on the speed of a solitary wave is actually sma
Equation~5! describes only a propagating front, because
fixing the inhibitor at small constant level we eliminate th
mechanism which otherwise would prescribe a finite lifetim
for the excitation. Since in the experiments we are going
discuss waves passing through the medium only once, it d
not matter whether or not the medium regains excitability

The V-shaped solution for the linearized version of E
~5! was constructed in@16#. It reads as
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u~j,y!5H M1 expF2
c0

cp
j G

1M2 expF S 2cp1
c0

cp
D jG J cosh@s1 cos~w`!y#,

~6!

whereM1,2 are some phase constants,c0 is the plane front
velocity for the Fisher traveling wave (c0>2), s15(2c0

1Ac0
224)/2, andw` is the asymptotic angle between ea

wing and theX axis (w`5a/2). Also cp , c0 , and w` are
related to each other as

cp5c0 /sin~w`!. ~7!

This is a special case of the local relationship

cp5c/sin~w!, ~8!

with c being the local normal velocity of the front, andw
being the angle between the tangent to the front line and
X axis (wuy→6`→6w`). For a constant level line,u(j,y)
5ul[const,w is defined by

dy

dj
52S uj

uy
D

u5ul

5tan~w!. ~9!

The curvature of the level line for the solution~6! can be
evaluated via the standard formulak5$2d2y/dj2/@1
1(dy/dj)2#3/2%u5ul

. Combining then appropriately the la

three expressions, one can findV as a function ofk andul .
If one accounts only for the leading term inj @the first term
in Eq. ~6!#, this expression takes the form

k52s1 sin2 w`S c

c0
D F12S c

c0
D 2G , ~10!

which does not depend onul . @An expression similar to Eq
~10! has been derived from an approximateV-shaped solu-
tion for the nonlinearized Fisher equation@16#.#

In order to interpret this result, Eq.~10!, in the context of
the Oregonator model, we have to account for the resca
we have done which introduces multiplicative prefactors
curvature and velocity,

k→
A«D

~124 f v0!1/4k, c→
A«/D

~124 f v0!1/4V. ~11!

Also we want to recall here that the specific character of
dependence ofs1 on c0 is due to the linearization of the
original equation@16#. In general, for the nonlinear case, th
dependence is expected to be different. Therefore below
replace2s1 with some constantb whose value may depen
on the dimensionless velocity of the plane excitation wa
Ṽ0 . For quantitative purpose we considerb as a free param
eter of the order of unity~its value for the Fisher case!. In
fact, we will see later thatb50.7 fits our numerical data
well. Thus Eq.~10! turns into
e

g
o

e

e

,

A«D

~124 f v0!1/4k5b sin2 w`S V

V0
D F12S V

V0
D 2G . ~12!

For small curvatures this cubic curve becomes

V5V02
V0A«D

2b~124 f v0!1/4sin2 w`

k ~13!

or, if we account for the rescaling~11!,

V5V02
gD

sin2 w`
k. ~14!

The dimensionless constantg5Ṽ0/2b(Ṽ0) here would be 1
for the Fisher wave@whenṼ05(c0)min andb52s1]. Note
that, in order to be consistent with our choice of smallk, here
we also have to replace sin2 w` by 1, since small curvature
can be achieved only for slightly curvedV waves, for which
w`;p/2. Finally, if we adopt that for EMg differs negligi-
bly from its value for the minimal Fisher wave, we recov
for small k the eikonal approximation. For large negativ
curvature, on the other hand, Eq.~12! gives the deviation of
V from the linear approximation towards smaller velocitie

In Eq. ~14! we intentionally retained the sin2 w` factor to
show explicitly that the slop in the eikonal approximatio
derived this way forV waves depends on the asympto
angle of theV wave. In experiments, the angle was increa
ing for every new point$k(w`),V(w`)%, moving from zero
to high negative curvatures, which, according to Eq.~14!,
introduces a larger slope for each point. The wholeV(k)
curve obtained in this way obviously deviates monotonica
from the linear dependence toward higher velocities. A
matter of fact, the experimental data were plotted withV in
Fig. 1 as the velocity of the pattern as a whole, that is,Vp .
The latter, as we know from Eq.~7!, is defined in terms of
the asymptotic angle. Accounting for this in Eq.~12! leads to

A«D

~124 f v0!1/4 k5bS V0

V
2

V

V0
D , ~15!

which is the velocity-curvature relation to be compared
the kind of data reported in@9#. The curve~15! is depicted in
Fig. 1 by a dashed line. It sketches correctly the nonlin
behavior demonstrated by the experimental data. The
served deviation is attributed, as discussed below, to dif
ent definitions of the front line in our theory and in@9#.

The presence in Eq.~14! of a coefficient in front ofk that
depends on plane-wave velocity is consistent with anot
recent observation on curvature effects for excitation wav
Namely, a recent study@17# on wave trains in EM reported
that not only does the first term in Eq.~1! depend on wave-
train period, but also the second term has, apart from
diffusion coefficient, a train-period-dependent prefactor. B
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FIG. 2. Two plane waves collide at an anglea52w`560° in a stripe of width 382 space units~s.u.! and length 638 s.u., according t
the numerical solution of the Oregonator equations~3a!, ~3b! for the parameters as in Fig. 1.~a! the V-shaped front propagating along th
X axis in its positive direction is depicted in 11 different moments of time in the Cartesian frame of references; in the area betwee
lines the front propagates stationarily, without change of its shape;~b! theVx component of the front velocity as a function ofy; the plateau
in the functionVx(y) corresponds to the area where the vertex wave front propagates stationarily; and~c! the vertex velocityVvertex as a
function of timet; the plateau in the functionVvertex(t) corresponds to the time when the vertex propagates stationarily.
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wave-train period is connected to the front velocity by
dispersion relationship, and therefore the period depende
of the slope becomes equivalent to the velocity depende
of the slope.

Numerical results.In order to check our theory, we hav
performed a corresponding numerical study ofV waves in
system~2! in the region of parameters explored in@9#. Com-
putations were performed on a sufficiently wide stripe.
order to produceV structures, we collide two plane wave
tilted ~in opposite directions! to the long axis of the stripe~X
axis! at angles6w`/2. No-flux boundary conditions wer
applied on each side of the stripe. As time proceeds,
initially sharp corner between the colliding waves smoo
out. At the same time, the preboundary parts of the wa
front curve tend to become perpendicular to the bound
lines, as required by the no-flux boundary condition@see Fig.
ce
ce

e
s
-

ry

2~a!#. The effect of these two processes on the rest of
front ~areas between the vertex and preboundary layers! is
different: while the negative curvature of the vertexkvertex
remains localized around the point of collision and quick
reaches its stationary value, the preboundary curvature
turbance propagates towards the vertex with velocityU
5V0 cotw` @9,18#. Thus if the width of the stripeW is such
that the time needed for the preboundary perturbation
reach the vertex,t* 5W/(2V0 cosw`), is much larger then
the time for establishing the stationary curvature of the v
tex, there exist unperturbed nearly straight regions on
wings of the wave connected by the stationary vertex,
Fig. 2~a!. We do our measurements on this nearly station
V wave before it disappears, when the perturbations from
boundaries approach the vertex area and convert the pa
into a plane wave. Figures 2~b! and 2~c! show that there is a
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3924 PRE 59PAVEL K. BRAZHNIK AND JOHN J. TYSON
finite domain in space~y! and time when we can accurate
measureV andk for a stationaryV wave.

In our numerical experiments the width of the stripe w
sufficiently large so that, whenkvertex is set to its stationary
value, relatively large areas of theV-pattern wings remained
unaffected by the preboundary perturbations. We have
formed computations forV waves with different angles star
ing from a510° up toa5120°. Similarly to the way we did
it in our theory, we defined the front line as a line of consta
level and measured the curvature and the normal velo
along the front line,k(y) andV(y). These two together give
a parametric~with the parametery! representation ofV(k)
for stationaryV waves. As can be seen from Fig. 3, o
theoretical curve turns out to be quite close to our meas
ments ofV(k) along the front of the stationaryV wave. The
agreement becomes even better if we choose in Eq.~12! b
50.7 instead of the Fisher wave valueb51.

We also collected numerical data aboutkvertex and
Vvertex([Vp) for different anglesa and therefore can con

FIG. 4. The contour plot of theV-shaped wave with the angl
between wingsa560° from our numerical experiment~parameters
as in Fig. 1!: only front lines are shown for the level cutsul50.1
and ul50.4, while both front and back-front lines are shown f
ul50.8 andul50.85.

FIG. 3. The velocity-curvature dependence forV waves in the
Oregonator model: open circles, triangles, squares, and diam
are our numerical data forV waves with the angle between wing
being 30°, 20°, 10°, and 5°, respectively~parameter values as i
Fig. 1,ul50.1, andt51200 time units!; solid lines are correspond
ing analytical curves, Eq.~12!, with b51 as for the Fisher waves
and dashed lines are curves~12! but with b50.7.
s

r-
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struct aV-of-k curve equivalent to the one reported in@9,10#
and shown in Fig. 1. Our numerical data are depicted in F
1 by triangles and circles for low and high level cuts,ul
50.1 and 0.8, respectively. The theoretical prediction
this kind of dependence, Eq.~15!, which is valid only for
low level cuts, is shown in Fig. 1 by a dashed line and agr
well with numerical results~triangles!. Our numerical results
indicate that the steepness of theVvertex(kvertex) curve de-
pends on the level of the cut, which can be understood fr
the contour plot of theV wave shown in Fig. 4: level lines
have essentially different curvature around the vertex
smaller for higher cuts—but since the pattern is stationa
all front lines must propagate with the same velocity.
@9,10# the front line was defined by the maxima at the wa
front, therefore it is our numerical data for the high level c
~circles! which repeat pretty well the trend of numerical da
from @9,10# ~diamonds!.

Numerical study ofV waves allows us to investigate th
effect of the cut level on the shape of theV(k) curve. Figure
5 shows threeV(k) curves, numerically determined at the c
levelsul50.1, 0.4, and 0.8, for theV wave witha510°. As
expected, the curves for higher cuts are ‘‘lifted’’ to high
velocities. Figure 5 shows, as well, that the dependence
V(k) on cut level can be absorbed into the adjustable par
eter b in our theoretical expression~12!. The ‘‘wedge’’ of
the V-k value observed in Fig. 5 represents a predicted c
fidence interval for experimental measurements of veloc
and curvature. These measurements will be uncertain
cause the cut level (ul) for a front is neither well defined no
easily reproducible. Nonetheless, theory predicts that m
surements should be within this wedge, becauseV(k) be-
comes independent oful for low cut levels (ul<1) and the
front disappears if cut level is too high (ul.1).

Conclusions.In this work we have shown both analyt
cally and numerically that the velocity-curvature relationsh
will deviate from linearity~the eikonal approximation!, and
that the extent of deviation depends on how the meas
ments are made. In experiments@9,10#, V(k) deviates to-

FIG. 5. Squares, triangles, and diamonds correspond to
velocity-curvature dependence for theV wave witha510° numeri-
cally determined at the cut levelsul50.1, 0.4, and 0.8, respectivel
~the Oregonator model, parameters as in Fig. 1!. Solid fitting curves
are generated by our theoretical expression, Eq.~12! with adjusted
b.

ds
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PRE 59 3925VELOCITY-CURVATURE DEPENDENCE FOR CHEMICAL . . .
wards higher velocities for large negative curvatures, but
analytical result, Eq.~12!, for stationaryV waves, deviates in
the opposite direction. We have shown that this discrepa
is due to different ways thatV(k) is measured in experiment
and in our analysis. In experiments, a family ofV waves is
created, parametrized bya, the angle between the wing
Each V wave from this family generates one point on t
V(k) curve, given by the velocityVvertex(a) and curvature
kvertex(a) of the vertex of the wave. In our analysis, from
single stationaryV wave, we generate the entireV(k) curve
le
,

d

r

cy

for k<kvertexby measuring local velocityV(y) and curvature
k(y) of the front ~parametrized byy, which increases from
y50 as we move away from the vertex!. When we take into
account precisely how theV(k) dependence is measure
then our theory and reported experimental measurement
in good agreement.
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